

PEO(TAD) TECHNOLOGY NEED FOCUSINGSHIP SELF DEFENSE (SSD)

PEO(TAD) / PEO(SC/AP) INDUSTRY DAY

31 July 1997

OUTLINE

- What is Ship Self Defense
 - **Environment**
 - Business
 - Acquisition
 - Improvements
- Technology Needs
- Summary

SHIP SELF DEFENSE BUSINESS

SYSARCH1.CDR 072997

REQUIRED SHIP SELF DEFENSE COMBAT SYSTEM ATTRIBUTES

- Automated detect-to-engage
- Tailorable to tactical situation
- Sensor correlation
 - Common tactical picture
 - Reduced reaction time
 - Countermeasure resistance
- Threat reactive
 - Automation
 - Flexible doctrine control
 - Integrated softkill / hardkill engagement

Applicable to multiple ship classes

INTEGRATED ELEMENTS OF LAYERED SHIP SELF DEFENSE

SHIP SELF DEFENSE ENGINEERING PHILOSOPHY

ADD EXISTING SYSTEMS	INTEGRATE SHIP DEFENSE ELEMENTS	DEVELOP ADVANCED CAPABILITIES
PROCURE AND INSTALL SYSTEMS/ UPGRADES ALREADY DEVELOPED: CIWS HOLC, SURF. MODE, R&M RIM 7P RAM + IRMU AN/SPS-49 MPU SIGNATURE REDUCTION	MULTI-SENSOR INTEGRATION	LEVERAGE NEW TECHNOLOGY ACTIVE PHASED ARRAY IR FOCAL PLANE ARRAY PRODUCT IMPROVEMENTS MISSILE GUIDANCE / FUZING / PROPULSION OFFBOARD ACTIVE COUNTERMEASURES
	MULTI-WEAPON CONTROL	NEW SYSTEMS
	HK / EW COORDINATION	PRECISION ESMAN/SPQ-9BIRST
	• AN/SLQ-32	– EVOLVED SEASPARROW
	• CEC	– SD LAUNCHER – AN/SLY-2 (AIEWS)

WHAT SHIP SELF DEFENSE IS DOING

- Acquisition Strategy to field the systems
 - Improve warfighting capabilities
 - * Integrate apertures
 - * Infuse new technology
 - * Design for technology upgrades
 - Reduce life cycle cost
 - * Integrate legacy systems
 - * Reduce number of legacy systems
 - * Design for open systems architecture
 - * Commonality within PEO(TAD) and DoD

SHIP SELF DEFENSE TECHNOLOGY OPPORTUNITIES

- Technology needs
 - Integrated topside design
 - Multifunction multiband RF system
 - Advanced beam director
 - Advanced sensor design
 - Radar sensors
 - Common RF module design

TECHNOLOGY NEED: INTEGRATED TOPSIDE DESIGN

- Demonstrate advanced technologies and system architectures that will achieve topside design integration improvements
 - Meet self defense requirements with reduced numbers and/or types of sensor systems (i.e. multifunction systems)
 - Meet self defense requirements with reduced numbers and/or types of weapons systems
 - Achieve substantial reduction in overall ship signature
 - Achieve substantial reduction in ship manning requirements
 - Achieve substantial reductions in combat system life cycle costs and / or procurement costs

TECHNOLOGY NEED: INTEGRATED TOPSIDE DESIGN

- ATD may demonstrate new systems (either hardware or software) that could include:
 - New or improved sensor systems, such as multifunction RF / IR systems
 - New or improved weapons systems, such as new guidance unit on an existing missile or a new, less expensive multifunction weapon
 - New or improved architecture substantially reducing the number of antenna systems and / or substantially reducing their detectability
 - Materials supporting substantial reductions in the ships signature
- Technology payoff The ATD may have the following benefits:
 - reduction of EMC problems
 - lower manning and life cycle costs
 - increased performance as a result of integrating system

TECHNOLOGY NEED: MULTIFUNCTION, MULTIBAND RF SYSTEM

- Demonstrate advanced technologies and system architectures that will achieve wideband multifunction RF receiving, transmitting, signal synthesis and aperture / time control
 - Use of common hardware, in particular, common aperture(s) for radar, EW, and communication functions
 - Graceful degradation in performance
 - reduced system life cycle and procurement costs provided by aperture / time sharing of common hardware
 - Smaller overall size and weight than combined separate systems
 - Implementable in airborne and surface platform systems
 - Lower procurement cost
 - Lower life cycle cost

TECHNOLOGY NEED: MULTIFUNCTION, MULTIBAND RF SYSTEM

- Common hardware for radar, EW and communication functions over extremely wide frequency ranges
 - Common multiple (digital) receivers
 - Multiple common module processors for radar, EW and comms processing
 - Multiple common (direct digital) synthesizers and waveform generators for synthesis of coherent RF signals
 - Resource manager for controlling demonstration system to perform simultaneous radar, EW and communication functions
 - Simultaneous multibeam transmit and receive operation
- Technology payoff The ATD may lead to follow-on development of digital beam forming techniques using true time delay for receive and transmit functions
 - Greatly reduced system complexity through use of digital beam forming instead of RF or photonic beam forming componentry
 - Most componentry can be remote from receive or transmit antenna elements and housed in controlled environments

TECHNOLOGY NEED: ADVANCED BEAM DIRECTOR

- Demonstrate advanced technologies and system architectures that provide a single, simultaneous, multisensor electro-optical beam director
 - Incorporate various applications supporting multiple missions in a single system
 - Support flexibility required in high technology turnover environment
 - Integrate with current systems / architectures
 - Must have ability to be easily tailored to specific platform / mission

TECHNOLOGY NEED: ADVANCED BEAM DIRECTOR

- ATD may demonstrate technology that provides a single, lightweight Electro-Optical director with the following characteristics:
 - Accept up to 4 sensors (operator select)
 - Provides environmentally shielded housing
 - Ease of sensor alignment
 - Minimize broadband transmission losses
 - Easy integration with SSD and AEGIS
- Technology payoff The ATD may lead to follow-on development of electro-optical systems
 - A single EO director

TECHNOLOGY NEED: ADVANCED SENSOR DESIGN

- Demonstrate advanced technologies and system architectures that provide an advanced, lightweight MWIR sensor prototype to support Thermal Imaging Sensor System (TISS), future beam directors and stabilized pedestals
 - High sensitivity (with resultant increase in detection / track ranges) through optical and signal processing
 - Gaussian output signal available for input to a video tracker
 - High resolution video through oversampling techniques
 - Potential to use optical elements to reduce the effect of stabilization jitter

TECHNOLOGY NEED: ADVANCED SENSOR DESIGN

- ATD may demonstrate technology that will resolve limitations of conventional staring focal plane arrays:
 - Bad / noisy detectors effects are essentially eliminated
 - Fixed pattern noise significant reduction in RMS noise and noise spikes
 - Sensitivity improvement allows detection of extremely weak objects or allows trade-off of system size / weight parameters
- Technology payoff The ATD may lead to follow-on development of advanced sensor systems with an
 - Increase in detector yield (reducing costs)
 - Increase in performance sensitivity

TECHNOLOGY NEED: RADAR SENSORS

- Demonstrate advanced technologies and system architectures that will achieve the full range of
 - Radar functions for targets from conventional to stealth
 - Operating at varying ranges and in severe operating conditions (including littoral)
 - Common aperture(s) required for the next generation of ships including
 - * Volume surveillance radar functions, typically at L band
 - * Weapon system control function, typically at X or Ku bands
 - * TBMD radar functions, typically at S band
- Achieve reduced procurement cost
- Achieve reduced life cycle cost

TECHNOLOGY NEED: RADAR SENSORS

- ATD may demonstrate performance in the following areas:
 - clutter cancellation in the littoral environment which enables the detection of low targets
 - target classification
 - commonality of components (e.g. signal processor for L, S and X band systems)
 - discrimination techniques for TBM targets
- Technology payoff The ATD may lead to new radar systems for the next generation of ships
 - increased performance due to the use of active aperture phased arrays
 - lower cost of ownership due to commonality

TECHNOLOGY NEED: COMMON RF MODULE DESIGN

- Demonstrate advanced technologies and system architectures for advanced RF module designs that will:
 - Meet the requirements for advanced, common, multifunction RF systems onboard both ships and aircraft (e.g. broadband, high power, very large dynamic range,...)
 - Perform radar, EW and communications functions
 - Support or achieve direct digital synthesis and digital reception at the module level, and digital beamforming at the system level.
 - Have substantially reduced procurement costs when compared to existing RF modules
 - Achieve substantial reductions in combat system life cycle costs

TECHNOLOGY NEED: COMMON RF MODULE DESIGN

- ATD may demonstrate the following technologies
 - wide bandwidth
 - affordability
 - efficiency
 - stability requirements (for clutter cancellation)
 - required power across the band
- Technology payoff ATD may be a major step in permitting multifunction RF systems for RADAR, EW and communications. This would result in:
 - increased performance
 - lower manning
 - reduced life cycle costs

NAVY LABORATORY / INDUSTRIAL PARTNERSHIPS

Possible laboratory partners

NRL

- Radar Division Girard Trunk - (202) 767-2573

- EW Division Joseph Lawrence - (202) 767-5933

NSWC Dahlgren

- Electro-Optics / Radar Stuart Koch - (540) 653-8737

Strong navy laboratory / industrial cooperation result in strong proposals

SUMMARY

Technology insertion opportunities in emerging SSD System intended for new surface platforms

- Systems
 - AIEWS
 - MFR / VSR
 - EO (TISS and IRST)

- Surface Platforms
 - LPD-22
 - CVN-77
 - DD-21
 - CVX

We are looking for:

- Transition potential
- Improved mission effectiveness (e.g. increased performance, reduced signature)
- Affordability (e.g. reduced manning, reduced life cycle cost, commonality with other DoD systems)